Use Case: Customer Support in E-Commerce
Problem: High Cost and Slow Response in Customer Service
E-commerce companies often struggle with high volumes of repetitive customer inquiries (e.g., order tracking, return policies, delivery delays). Human agents get overwhelmed, leading to:
· Long response times (avg. >12 hours)
· High support staffing costs
· Low customer satisfaction (CSAT scores below 70%)
Proposed AI Agent: Smart Support Concierge
An AI-powered customer support agent embedded in the company's website and mobile app that:
· Answers FAQs instantly via natural language
· Checks order status via API integration with backend systems
· Guides users through returns and refunds
· Escalates complex queries to human agents with full conversation history
Interaction Channels: Chat widget (web & mobile), optional voice interface
Measurable Impact
1. ⏱ Time Saved: Average response time reduced from 12 hours to under 30 seconds
2. 💸 Cost Savings: 40–60% reduction in support center costs by deflecting up to 80% of Tier 1 queries
3. 😊 Improved CSAT: Customer satisfaction increases from 68% to 85% due to faster resolution and 24/7 availability
Bonus: Interaction Sketch
· Users open the chat widget labeled “Ask about your order”
· They type: “Where is my package?”
· The agent replies: “Your order #12345 is currently out for delivery and expected by 6 PM today.”
· Buttons below allow follow-up: “Track Live”, “Report Issue”, “Return Item”

Here's a structured Lovable.dev prompt using the C.L.E.A.R. principles to build the Smart Support Concierge AI agent:
📦 AI Customer Support Agent – Prompt for Lovable.dev
Context
You are an AI developer building a customer support chatbot for an e-commerce website using Lovable.dev. The chatbot must handle common support tasks and integrate with backend systems.
Task
Create an AI-powered chat interface embedded on the homepage. The chatbot should:
· Answer FAQs (shipping, returns, refund policies)
· Provide real-time order tracking via Supabase API
· Escalate unresolved issues to human agents with conversation history
· Support follow-up actions through quick-reply buttons
Guidelines
· Use React and Tailwind CSS for the chat UI
· Connect to a Supabase database to retrieve order information (e.g., order ID, status, delivery estimate)
· Use OpenAI or Anthropic for conversational handling
· Pre-train with FAQs and escalation triggers
· Keep the chat window lightweight and mobile-responsive
Constraints
· Do not store any sensitive user information in the frontend
· Must handle API errors gracefully
· Must respond in <2 seconds for real-time queries
· The chatbot UI must not cover any critical UI elements on mobile

Here's how we can break this into incremental Lovable.dev prompts for a clean, step-by-step implementation:
🧩 Step 1: Build the Chat UI
Prompt:
sql
Create a floating chat widget for the homepage using React and Tailwind CSS. The chat bubble should be fixed to the bottom right, expandable into a panel with:
- A header titled “Smart Support”
- A message window with scroll
- An input box with a send button
- Support for displaying bot and user messages
Style it with a minimal, mobile-friendly look. Ensure it doesn’t overlap with core page content.

🔌 Step 2: Add Supabase Integration for Order Tracking
Prompt:
pgsql
Connect the chat interface to a Supabase backend with an "orders" table. The table includes: order_id, user_email, status, expected_delivery.
When a user types “Where is my order?” followed by their order ID or email, query Supabase and return the order status and delivery estimate.
Handle API errors and show a fallback message like: “Sorry, I couldn’t find your order.”
🧠 Step 3: Add AI Logic for FAQ + Escalation
Prompt:
pgsql
Integrate OpenAI to handle customer messages that are not related to orders. Include a predefined set of FAQs (returns, refunds, shipping times).
If the user types a message the model can’t confidently answer, respond with: “I’ll connect you to a human agent now,” and trigger an `escalateToHuman()` function (placeholder).
Maintain a message history array so the full conversation can be sent during escalation.
🎛️ Step 4: Add Quick Reply Buttons
Prompt:
sql
Enhance the chat UI with quick-reply buttons after certain messages. For example:
- After order status: [Track Live] [Report Issue]
- After refund info: [Start Return] [Talk to Human]
Handle button clicks with matching function calls and update the conversation view accord

