Description
Use AI and statistics to analyze Glassdoor reviews and reveal hidden patterns of workplace bias or discrimination.
Ideal for researchers, journalists, DEI teams, and advocacy groups seeking evidence-based insights.
๐นย How It Works:
โ
ย ๐ธ Scrape Reviewsย โ Pull employee feedback from Glassdoor using ScrapingBee
โ
ย ๐ Demographic Extractionย โ Use OpenAI-powered text analysis to identify group-based mentions
โ
ย ๐ Statistical Analysisย โ Measure disparities using z-scores, p-values, and effect sizes
โ
ย ๐ Visual Reportingย โ Auto-generate charts (scatter, bar) to visualize biases and inequities
๐ผย Use Cases:
๐งโโ๏ธย DEI Researchย โ Back diversity and inclusion goals with quantitative insights
๐ฐย Investigative Journalismย โ Validate claims of discrimination using data
๐ขย HR & Complianceย โ Monitor internal reviews for risk and bias
๐ย Academic Studiesย โ Examine systemic patterns in workplace experiences
๐ง ย Why Itโs Smart:
๐ย Real-World Reviewsย โ Uses authentic employee feedback
๐ย Statistical Rigorย โ Calculates significance, not just surface-level metrics
๐ฏย Insightful Chartsย โ Visualizations make findings clear and actionable
๐ย Repeatable Processย โ Easily switch companies and rerun the analysis
๐ฃย Equity Advocacyย โ Supports transparency and systemic accountability
๐งย Level of Effort:
๐ก Medium โ Requires API setup and one-time configuration (~20 minutes)
๐งฉย Youโll Need:
-
๐ ScrapingBee API Key (for Glassdoor scraping)
-
๐ค OpenAI API Key (for text-based demographic extraction)
-
๐ข Target company name (best results for large U.S. firms)
-
๐ Jupyter or visualization-ready environment (optional but ideal)
๐กย Customization Tip:
Swap in other review sources (e.g., Indeed, Blind) or plug results into your own dashboards (Metabase, Tableau, etc.) for deeper internal tracking and comparison.
๐ย Shine a Light on Workplace Disparities with AI and Data Science.
From text to truth โ turn employee voices into actionable insights for a fairer future.







